133 research outputs found

    On Ergodic Secrecy Capacity for Gaussian MISO Wiretap Channels

    Full text link
    A Gaussian multiple-input single-output (MISO) wiretap channel model is considered, where there exists a transmitter equipped with multiple antennas, a legitimate receiver and an eavesdropper each equipped with a single antenna. We study the problem of finding the optimal input covariance that achieves ergodic secrecy capacity subject to a power constraint where only statistical information about the eavesdropper channel is available at the transmitter. This is a non-convex optimization problem that is in general difficult to solve. Existing results address the case in which the eavesdropper or/and legitimate channels have independent and identically distributed Gaussian entries with zero-mean and unit-variance, i.e., the channels have trivial covariances. This paper addresses the general case where eavesdropper and legitimate channels have nontrivial covariances. A set of equations describing the optimal input covariance matrix are proposed along with an algorithm to obtain the solution. Based on this framework, we show that when full information on the legitimate channel is available to the transmitter, the optimal input covariance has always rank one. We also show that when only statistical information on the legitimate channel is available to the transmitter, the legitimate channel has some general non-trivial covariance, and the eavesdropper channel has trivial covariance, the optimal input covariance has the same eigenvectors as the legitimate channel covariance. Numerical results are presented to illustrate the algorithm.Comment: 27 pages, 10 figure

    On the Coherence Properties of Random Euclidean Distance Matrices

    Full text link
    In the present paper we focus on the coherence properties of general random Euclidean distance matrices, which are very closely related to the respective matrix completion problem. This problem is of great interest in several applications such as node localization in sensor networks with limited connectivity. Our results can directly provide the sufficient conditions under which an EDM can be successfully recovered with high probability from a limited number of measurements.Comment: 5 pages, SPAWC 201

    Matrix Completion in Colocated MIMO Radar: Recoverability, Bounds & Theoretical Guarantees

    Full text link
    It was recently shown that low rank matrix completion theory can be employed for designing new sampling schemes in the context of MIMO radars, which can lead to the reduction of the high volume of data typically required for accurate target detection and estimation. Employing random samplers at each reception antenna, a partially observed version of the received data matrix is formulated at the fusion center, which, under certain conditions, can be recovered using convex optimization. This paper presents the theoretical analysis regarding the performance of matrix completion in colocated MIMO radar systems, exploiting the particular structure of the data matrix. Both Uniform Linear Arrays (ULAs) and arbitrary 2-dimensional arrays are considered for transmission and reception. Especially for the ULA case, under some mild assumptions on the directions of arrival of the targets, it is explicitly shown that the coherence of the data matrix is both asymptotically and approximately optimal with respect to the number of antennas of the arrays involved and further, the data matrix is recoverable using a subset of its entries with minimal cardinality. Sufficient conditions guaranteeing low matrix coherence and consequently satisfactory matrix completion performance are also presented, including the arbitrary 2-dimensional array case.Comment: 19 pages, 7 figures, under review in Transactions on Signal Processing (2013

    Compressive Sensing for MIMO Radar

    Full text link
    Multiple-input multiple-output (MIMO) radar systems have been shown to achieve superior resolution as compared to traditional radar systems with the same number of transmit and receive antennas. This paper considers a distributed MIMO radar scenario, in which each transmit element is a node in a wireless network, and investigates the use of compressive sampling for direction-of-arrival (DOA) estimation. According to the theory of compressive sampling, a signal that is sparse in some domain can be recovered based on far fewer samples than required by the Nyquist sampling theorem. The DOA of targets form a sparse vector in the angle space, and therefore, compressive sampling can be applied for DOA estimation. The proposed approach achieves the superior resolution of MIMO radar with far fewer samples than other approaches. This is particularly useful in a distributed scenario, in which the results at each receive node need to be transmitted to a fusion center for further processing

    Cooperative Beamforming for Wireless Ad Hoc Networks

    Full text link
    Via collaborative beamforming, nodes in a wireless network are able to transmit a common message over long distances in an energy efficient fashion. However, the process of making available the same message to all collaborating nodes introduces delays. In this paper, a MAC-PHY cross-layer scheme is proposed that enables collaborative beamforming at significantly reduced collaboration overhead. It consists of two phases. In the first phase, nodes transmit locally in a random access time-slotted fashion. Simultaneous transmissions from multiple source nodes are viewed as linear mixtures of all transmitted packets. In the second phase, a set of collaborating nodes, acting as a distributed antenna system, beamform the received analog waveform to one or more faraway destinations. This step requires multiplication of the received analog waveform by a complex weight, which is independently computed by each cooperating node, and which allows packets bound to the same destination to add coherently at the destination node. Assuming that each node has access to location information, the proposed scheme can achieve high throughput, which in certain cases exceeds one. An analysis of the symbol error probability corresponding to the proposed scheme is provided.Comment: 5 pages, 4 figures. To appear in the Proceedings of the IEEE Global Communications Conference (GLOBECOM), Washington, DC, November 26 - 30, 200
    • …
    corecore